九江原子力显微镜测试联系方式

时间:2024年03月02日 来源:

随着科学技术的发展,生命科学开始向定量科学方向发展。大部分实验的研究重点已经变成生物大分子,特别是核酸和蛋白质的结构及其相关功能的关系。因为AFM的工作范围很宽,可以在自然状态(空气或者液体)下对生物医学样品直接进行成像,分辨率也很高。因此,AFM已成为研究生物医学样品和生物大分子的重要工具之一。AFM应用主要包括三个方面:生物细胞的表面形态观测;生物大分子的结构及其他性质的观测研究;生物分子之间力谱曲线的观测;原子力显微镜(AFM)与扫描隧道显微镜(STM)差别在于并非利用电子隧穿效应;九江原子力显微镜测试联系方式

九江原子力显微镜测试联系方式,原子力显微镜测试

原子力显微镜(AtomicForceMicroscope,AFM),一种可用来研究包括绝缘体在内的固体材料表面结构的分析仪器。它通过检测待测样品表面和一个微型力敏感元件之间的极微弱的原子间相互作用力来研究物质的表面结构及性质。将一对微弱力极端敏感的微悬臂一端固定,另一端的微小针尖接近样品,这时它将与其相互作用,作用力将使得微悬臂发生形变或运动状态发生变化。扫描样品时,利用传感器检测这些变化,就可获得作用力分布信息,从而以纳米级分辨率获得表面形貌结构信息及表面粗糙度信息。济宁原子力显微镜测试多少钱带有针尖的微悬臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样品的表面方向起伏运动;

九江原子力显微镜测试联系方式,原子力显微镜测试

原子力显微镜(AtomicForceMicroscope,简称AFM)利用微悬臂感受和放大悬臂上尖细探针与受测样品原子之间的作用力,从而达到检测的目的,具有原子级的分辨率。由于原子力显微镜既可以观察导体,也可以观察非导体,从而弥补了扫描隧道显微镜的不足。原子力显微镜是由IBM公司苏黎世研究中心的格尔德·宾宁于一九八五年所发明的,其目的是为了使非导体也可以采用类似扫描探针显微镜(SPM)的观测方法。原子力显微镜(AFM)与扫描隧道显微镜(STM)差别在于并非利用电子隧穿效应,而是检测原子之间的接触,原子键合,范德瓦耳斯力或卡西米尔效应等来呈现样品的表面特性。

原子力显微镜的工作模式是以针尖与样品之间的作用力的形式来分类的。主要有以下3种操作模式:接触模式(contactmode),非接触模式(non-contactmode)和敲击模式(tappingmode)。接触模式从概念上来理解,接触模式是AFM直接的成像模式。AFM在整个扫描成像过程之中,探针针尖始终与样品表面保持紧密的接触,而相互作用力是排斥力。扫描时,悬臂施加在针尖上的力有可能破坏试样的表面结构,因此力的大小范围在10-10~10-6N。若样品表面柔嫩而不能承受这样的力,便不宜选用接触模式对样品表面进行成像。非接触模式非接触模式探测试样表面时悬臂在距离试样表面上方5~10nm的距离处振荡。这时,样品与针尖之间的相互作用由范德华力控制,通常为10-12N,样品不会被破坏,而且针尖也不会被污染,特别适合于研究柔嫩物体的表面。这种操作模式的不利之处在于要在室温大气环境下实现这种模式十分困难。因为样品表面不可避免地会积聚薄薄的一层水,它会在样品与针尖之间搭起一小小的毛细桥,将针尖与表面吸在一起,从而增加对表面的压力。;二极管激光器(LaserDiode)发出的激光束经过光学系统聚焦在微悬臂(Cantilever)背面;

九江原子力显微镜测试联系方式,原子力显微镜测试

原子力显微镜是在1986年由扫描隧道显微镜(ScanningTunnelingMicroscope)的发明者之一的葛宾尼(GerdBinnig)博士在美国斯坦福大学与C.FQuate和C.Gerber等人研制成功的;[1]它主要由带针尖的微悬臂、微悬臂运动检测装置、监控其运动的反馈回路、使样品进行扫描的压电陶瓷扫描器件、计算机控制的图像采集、显示及处理系统组成。微悬臂运动可用如隧道电流检测等电学方法或光束偏转法、干涉法等光学方法检测,当针尖与样品充分接近相互之间存在短程相互斥力时,检测该斥力可获得表面原子级分辨图像,一般情况下分辨率也在纳米级水平。AFM测量对样品无特殊要求,可测量固体表面、吸附体系等;因而,通过光电二极管检测光斑位置的变化,就能获得被测样品表面形貌的信息。晋中原子力显微镜测试服务

微悬臂将随样品表面形貌而弯曲起伏,反射光束也将随之偏移;九江原子力显微镜测试联系方式

在AFM 观察包裹有紫膜的噬菌调理素蛋白(BR) 的研究中,AFM 仪器的改进,检测技术的提高和制样技术的完善得到了集中的体现。在细胞中,分子马达可以将化学能转变为机械运动,防止因为布朗运动导致的细胞中具有方向性的活动出现错误,这些活动包括:肌浆球蛋白,运动蛋白,动力蛋白,螺旋酶,DNA 聚合酶和RNA 聚合酶等分子马达蛋白的共同特点是沿着一条线性轨道执行一些与生命活动息息相关的功能,比如肌肉的收缩,细胞的分化过程中染色体的隔离,不同细胞间的细胞器的置换以及基因信息的解码和复制等。由于分子马达本身的微型化,它们容易受更高的热能和大的波动的影响,了解马达分子如何正常有序工作就成为一项具有挑战性的任务。利用AFM,人们已经知道了肌动蛋白结合蛋白的结构信息和细胞运动过程中肌动蛋白骨架调控功能。九江原子力显微镜测试联系方式

信息来源于互联网 本站不为信息真实性负责